4723 Core Mathematics 3

1 (i)	State $y=\sec x$	B1	
(ii)	State $y=\cot x$	B1	
(iii)	State $y=\sin ^{-1} x$	B1 3	
		3	
2	Either: State or imply $\int \pi(2 x-3)^{4} \mathrm{~d} x$	B1	or unsimplified equiv
	Obtain integral of form $k(2 x-3)^{5}$	M1	any constant k involving π or not
	Obtain $\frac{1}{10}(2 x-3)^{5}$ or $\frac{1}{10} \pi(2 x-3)^{5}$	A1	
	Attempt evaluation using 0 and $\frac{3}{2}$	M1	subtraction correct way round
	Obtain $\frac{243}{10} \pi$	A1 5	or exact equiv
	Or: State or imply $\int \pi(2 x-3)^{4} \mathrm{~d} x$	B1	or unsimplified equiv
	Expand and obtain integral of order 5	M1	with at least three terms correct
	Ob'n $\frac{16}{5} x^{5}-24 x^{4}+72 x^{3}-108 x^{2}+81 x$	A1	with or without π
	Attempt evaluation using (0 and) $\frac{3}{2}$	M1	
	Obtain $\frac{243}{10} \pi$	A1 (5)	or exact equiv
		5	

5 (i) Either: Show correct process for comp'n
Obtain $y=3(3 x+7)-2$
Obtain $x=-\frac{19}{9}$

Or: Use $\operatorname{fg}(x)=0$ to obtain $g(x)=\frac{2}{3}$
Attempt solution of $g(x)=\frac{2}{3}$
Obtain $x=-\frac{19}{9}$

M1 correct way round and in terms of x A1 or equiv
A1 3 or exact equiv; condone absence of $y=0$

B1

M1
A1 (3) or exact equiv; condone absence of $y=0$
(ii) Attempt formation of one of the equations

$$
3 x+7=\frac{x-7}{3} \text { or } 3 x+7=x \text { or } \frac{x-7}{3}=x \quad \text { M1 } \quad \text { or equiv }
$$

Obtain $x=-\frac{7}{2} \quad$ A1 or equiv
Obtain $y=-\frac{7}{2} \quad \mathrm{~A} 1 \sqrt{ } 3$ or equiv; following their value of x
(iii) Attempt solution of modulus equation

M1 squaring both sides to obtain 3-term quadratics or forming linear equation with signs of $3 x$ different on each side
Obtain $-12 x+4=42 x+49$ or $3 x-2=-3 x-7$
Obtain $\quad x=-\frac{5}{6}$
Obtain $y=\frac{9}{2}$
A1 or equiv
A1 or exact equiv; as final answer
A1 4 or equiv; and no other pair of answers
10
6 (i) Obtain derivative $k\left(37+10 y-2 y^{2}\right)^{-\frac{1}{2}} \mathrm{f}(y)$ M1 any constant k; any linear function for f
Obtain $\frac{1}{2}(10-4 y)\left(37+10 y-2 y^{2}\right)^{-\frac{1}{2}} \quad$ A1 2 or equiv
(ii) Either: Sub'te $y=3$ in expression for $\frac{\mathrm{d} x}{\mathrm{~d} y} \quad * \mathrm{M} 1$

Take reciprocal of expression/value *M1
Obtain -7 for gradient of tangent A1
Attempt equation of tangent
Obtain $y=-7 x+52$
$\underline{\text { Or: Sub'te } y=3 \text { in expression for } \frac{\mathrm{d} x}{\mathrm{~d} y}}$
M1
Attempt formation of eq'n $x=m^{\prime} y+c \quad$ M1
Obtain $x-7=-\frac{1}{7}(y-3)$
A1
Attempt rearrangement to required form M1
Obtain $y=-7 x+52$

M1
A1 5 and no second equation
dep $* M * M$
and without change of sign

7 (i)
State $R=10$
Attempt to find value of α
Obtain 36.9 or $\tan ^{-1} \frac{3}{4}$

B1 or equiv
M1 implied by correct answer or its complement; allow sin/cos muddles
A1 3 or greater accuracy $36.8699 \ldots$
(ii)(a) Show correct process for finding one angle M1

Obtain (64.16 + 36.87 and hence) 101 A1
Show correct process for finding second angle
Obtain (115.84 + 36.87 and hence) 153
or greater accuracy $101.027 \ldots$

M1
A1 $\sqrt{ } 4$ following their value of α; or greater accuracy 152.711...; and no other between 0 and 360
(b) Recognise link with part (i)

Use fact that maximum and minimum values of sine are 1 and -1
Obtain 60

M1 signalled by $40 \ldots$ - $20 \ldots$
M1 may be implied; or equiv
A1 3
10

8 (i) Refer to translation and stretch M1 in either order; allow here equiv informal
State translation in x direction by 6
State stretch in y direction by 2 terms such as 'move', ...
[SC: if M0 but one transformation completely correct, give B1]
(ii) State $2 \ln (x-6)=\ln x$

B1 or $2 \ln (a-6)=\ln a$ or equiv
Show correct use of logarithm property
Attempt solution of 3-term quadratic *M1
M1 dep *M
Obtain 9 only
A1 4 following correct solution of equation
(iii) Attempt evaluation of form $k\left(y_{0}+4 y_{1}+y_{2}\right)$ M1 any constant k; maybe with $y_{0}=0$ implied

Obtain $\frac{1}{3} \times 1(2 \ln 1+8 \ln 2+2 \ln 3) \quad$ A1 or equiv
Obtain 2.58 A1 3 or greater accuracy 2.5808... 10

9 (a) Attempt use of quotient rule
*M1 or equiv; allow numerator wrong way round and denominator errors
Obtain $\frac{\left(k x^{2}+1\right) 2 k x-\left(k x^{2}-1\right) 2 k x}{\left(k x^{2}+1\right)^{2}}$
A1 or equiv; with absent brackets implied by
subsequent correct working
Obtain correct simplified numerator $4 k x$ A1
Equate numerator of first derivative to zero M
dep *M
State $x=0$ or refer to $4 k x$ being linear or observe that, with $k \neq 0$, only one sol'n $k^{\prime} k x=0$, any constant k^{\prime}
(b) Attempt use of product rule

Obtain $m \mathrm{e}^{m x}\left(x^{2}+m x\right)+\mathrm{e}^{m x}(2 x+m)$

Equate to zero and either factorise with factor $\mathrm{e}^{m x}$ or divide through by $\mathrm{e}^{m x}$
Obtain $m x^{2}+\left(m^{2}+2\right) x+m=0$ or equiv and observe that $\mathrm{e}^{m x}$ cannot be zero

Attempt use of discriminant
Simplify to obtain $m^{4}+4$
Observe that this is positive for all m and hence two roots
*M1
A1 or equiv

M1 dep *M

A1

M1 using correct $b^{2}-4 a c$ with their a, b, c
A1 or equiv
A1 7 or equiv; AG
12

